

CCS related research activities in 3E (Energy, Environment and Economy Research Institute), Tsinghua Univ.

Dr. Ruina XU, Prof. Wenying CHEN & Prof. Zongxin WU

> Tsinghua University May 30, 2008

Outline

- CCS related research projects
 - EU FP6 project -- Geocapacity
 - EU FP6 project -- COACH
 - Sino-UK cooperation -- NZEC
 - Sino-US cooperation
- Progress of these projects

EU FP6 project -- GeoCapacity

GeoCapacity

Partic.	Participant	Participant	Country
Number	Name	Short name	
1	Geological Survey of Denmark and Greenland	GEUS	Denmark
2	University of Sofia	US	Bulgaria
3	University of Zagreb	RGN	Croatia
4	Czech Geological Survey	CGS	Czech Republic
5	Institute of Geology at Tallinn University of Technology	IGTUT	Estonia
6	Bureau de Recherce de Geologie et Miniere	BRGM	France
7	Institute Française du Petrole	IFP	France
8	Bundesanstalt für Geologie und Rohstoffen	BGR	Germany
9	Institute for Geology and Mining Engineering	IGME	Greece
10	E ätv äs Lor ánd Geophysical Institute of Hungary	ELGI	Hungary
11	Isituto Nazionale Oceanografie e Geofisica Sperimentale	OGS	Italy
12	Latvian Environment, Geology & Meteorology Agency	LEGMA	Latvia
13	Institute of Geology and Geography	IGG	Lithuania
14	Geological Survey of the Netherlands	TNO-NITG	Netherlands
15	Ecofys	Ecofys	Netherlands
16	Academy of Science (MEERI)	MEERI	Poland
17	Geophysical Exploration Company	PBG	Poland
18	GeoEcoMar	GeoEcoMar	Romania
19	Dionyz Stur State Geological Institute	SGUDS	Slovakia
20	GEOINZENIRING	GEO-INZ	Slovenia
21	Instituto Geologico y Minero de Espana	IGME	Spain
22	British Geological Survey	BGS	UK
23	EniTecnologie (Industry Partner)	ENI	Italy
24	ENDESA Generacion (Industry Partner)	Endesa	Spain
25	Vattenfall AB (Industry Partner)	VAB	Sweden/Poland
26	Tsinghau University	TU	P. R. CHINA

GeoCapacity

Work Package

Inventory of major CO2 emission points Lead: BGS

Work Package 2

Geo -capacitiesin aquifers geothermal & other reservoirs Lead: GEUS

Work Pack . 3

Economic use of CO2

Lead: IFP

Lead: GEUS

Work Pack . 4

Standards, Site

selection criteri

Work Pack . 5

Economic Evaluation

Lead: TNO

Work Pack . 6

Internat.Coop

Capacity Building Lead: BRGM

Work Pack . 7

Project Mgmt

Reporting Lead: GEUS

WP 7.1

Overal1

project

(including

non-personel

budget)

Lead:

management

WP 1.1

Emissions Inventory of major CO2 emission point sources for albountries

Also input for pipelines. topography, LNG terminals, gas storeages HC fields Case Studies

Participants: input from all

WP 1.2

GIS mapping of new input and inclusion of exisistingata (GESTCO, IEA GHG)

Participants: BGS, GEUS

WP 1.3

EU maps of emissions and geologicalstorage potential Participants: GEUS, BGS, A11

WP 2.1 North East

Group : Estonia Latvia Lithuania Poland. Czech R. Slovakia

Lead: SGUDS Slovakia

WP 2.2 Central East

Group : Romania Bulgaria Hungary, (Albania

Lead: ELGI Hungary

FYROM)

Lead: U. Zagreb Croatia

WP 2.3

South

Group:

Spain,

Italy

Slovenia,

Croatia

Regional geol storagassessments

Country storage capacity calculations

WP 2.4 Case studies (23 per country) Lead: TNO with IFP

WP 2.5

Country updates from previous study areas (Germany , Denmark , UK, Greece, Netherlands, France)

Lead: BGR, Germany

WP 3.1

Geo -capacities in hvdrocarbon structures and EOR potential

Lead: PBG Poland

WP 3.2

Geo -capacities in coal beds and ECBM potential

Lead: CGS Czech R. WP 4.1

Site selection criteria

> Lead: BGS

WP 4.2

Defining Geo -storage capacity standards

> Lead: GEUS

WP 5.1

DSS development

> Lead: TNO

WP 5.2

Economic evaluations

> Lead: **Ecofys**

WP 6.1

Establish framework for coop and initiate geo-storage technology transfer

> Lead: BRGM

WP 6.2

Establish joint activities with CSLF member China as

> Lead: **GEUS**

GEUS with CGS, ELGI, SGUDS

WP 7.1

Reporting to EU. CSLF and conference papers

Make Website and CD

> Lead: GEUS &

CGS Czech R. (website) with OGS Italy

TU's tasks

- WP1: a region in China
 - Inventory of major carbon emission points for Hebei Province
- WP6: International cooperation and capacity building
 - Storage potentials assessment for Huabei oil field
 - Mapping of sources and sinks

Power sector CO₂ Emission Sources in Hebei Province

- Totally around 130 thermal power plants with capacity over 6 MW
- There are 42 power plants with capacity over 50 MW (all coal-fired power plants)
- Average operation hours: 6350 hours
- Average gross coal consumption rate: 350 gce/kWh
- Emissions from these 42 sources amount to 137 Mt
 CO2/yr

Other CO₂ Emission Sources in Hebei Province

	Total enterprises		Collected enterprises		
Type	Number	annual production	Number	annual production	CO ₂ estimated (Mt CO ₂ /yr)
Iron & Steel	9	24Mt	9	24Mt (100%)	47
Cement	386	88.5Mt	18	31.4Mt (35%)	25.4
Ammonia	50	3.3Mt	16	1.9 Mt (58%)	7.8
Oil refinery	3	9.4Mt	3	9.4Mt (100%)	3.3

CO₂ Emission Sources in Hebei Province

88 emission sources 220Mt CO2/yr

Distribution of CO2 sources

Sector

- Ammonia
- Cement
- 🔴 Iron&Steel
- 🤴 Power
- Refineries

CO2 Emissions (kt/yr)

- 100 500
- 500 1,000
- 1,000 5,000
- 5,000 10,000
- > 10,000

Jizhong Depression

- 43 oil & gas fields in Jizhong Depression including 23 buried hill oil fields and some tertiary oil fields.
- Renqiu Oilfield: buried hill oil fields with larger thickness (average 272m) but lower porosity (3%-5%).
- The proven OOIP of Renqiu oilfield is 406 Mt oil and 2.3 billion m³ gas.
- Hydrocarbon field storage potential: 600MtCO2

Aquifer areas in Jizhong depression

Aquifer storage potential: 3500MtCO2

Sinks: GIS present results

EU FP6 project -- COACH (Cooperation Action within CCS China-EU)

COACH

Partic. n°	Participant name	Participant short name	Country
1	Institut Français du Pétrole	IFP	FR
2	SINTEF Energiforskning AS	SINTEF-ER	NO
3	Geological Survey of Denmark and Greenland	GEUS	DK
4	Natural Environment Research Council - British Geological Survey	BGS	UK
5	Kungliga Tekniska Högskolan	KTH	SE
6	BP International Ltd.	BP	UK
7	STATOIL ASA	Statoil	NO
8	Shell China Exploration and Production Co. Ltd	Shell	CHN
9	Etudes et Productions Schlumberger	EPS	FR
10	ALSTOM Power Ltd	ALSTOM	UK
11	Air Liquide	AIR-L	FR
12	Atanor	Atanor	FR
13	The Administrative Centre for China's Agenda	ACCA21	CHN
14	Tsinghua University	TU	CHN
15	Zhejiang University	ZJU	CHN
16	Institute of Engineering Thermophysics, Chinese Academy of Sciences	IET	CHN
17	Thermal Power Research Institute	TPRI	CHN
18	Institute of Geology and Geophysics, Chinese Academy of Sciences	IGGCAS	CHN
19	Research Institute of Petroleum Exploration&Development-Langfang, PetroChina	RIPED	CHN
20	China Huaneng Group	CHNG	CHN

COACH

Power Plant CO₂ Emission sources in Shandong province

- Totally around 170 thermal power plants with capacity over 6 MW
- There are 49 power plants with capacity over 100 MW
 - 1 gas power plant
 - 1 oil power plant
 - 47 coal-fired power plants
- Average operation hours: 5010 hours
- Average gross coal consumption rate: 330 gce/kWh
- Emissions from these 49 sources amount to 120 MtCO2/yr

CO₂ sources in Shandong Province

Sino-UK cooperation

-- Near Zero Emissions Coal (NZEC) Initiative

NZEC

 Defra/DTI and MOST envisage an ambitious phased approach over several years for the development, funding and implementation of the NZEC project

Phase 1	Exploring the Options for Near-Zero Emissions Coal in China – Assessment	2006-2009
Phase 2	Define, Plan and Design a Demonstration Project	2009-2011
Phase 3	Construct and Operate a Demonstration Project	2011-2014+

Work Packages for Phase 1

- WP1: Knowledge Sharing and Capacity Building
- WP2: Future Energy Technology Perspectives
- WP3: Case Studies for Carbon Dioxide Capture
- WP4: Carbon Dioxide Storage Potential
- WP5: Policy level recommendations for demonstration and roadmap for deployment of CCS for coal fired power generation

Sino-US cooperation

Power sector CO₂ Emission Sources in Henan Province

- Totally around 160 thermal power plants with capacity over 6 MW
- There are 60 power plants with capacity over 100 MW (all coal-fired power plants)
- Average operation hours: 5500 hours
- Average gross coal consumption rate: 410 gce/kWh
- Emissions from these 60 sources amount to 110 Mt CO2/yr

CO₂ sources in Henan Province

CO2 sources in Hebei, Shandong and Henan

Sector

- Ammonia
- Cement
- ♠ Iron@Steel
- Power
- Refineries

CO2 Emissions (kt/yr)

- 100 500
- 500 1,000
- 1,000 5,000
- 5,000 10,000
- > 10,000

Thanks